API References
This part of the project documentation focuses on
an information-oriented approach. Use it as a
reference for the technical implementation of the
calculator
project code.
Computation of geospatial distances (WGS84).
Computation of Geospatial Distances (WGS84)
Coordinates are assumed to be in Latitude and Longitude (WGS 84). Accepting numpy arrays as input.
The geospatial distance calculation is based on Vincenty's inverse method formula and accelerated with Numba (see geokernels.geodesics.geodesic_vincenty
and references).
In a few cases (<0.01%) Vincenty's inverse method can fail to converge, and a fallback option using the slower geographiclib solution is implemented.
Functions Included:
geodist
: returns a list of distances between points of two lists:dist[i] = distance(XA[i], XB[i])
geodist_matrix
: returns a distance matrix between all possible combinations of pairwise distances (either between all points in one list or points between two lists).dist[i,j] = distance(XA[i], XB[j])
ordistance(X[i], X[j])
This implementation provides a fast computation of geo-spatial distances in comparison to alternative methods for computing geodesic distance (tested: geopy and GeographicLib, see geokernels.test_geodesics
for test functions).
References:
- Vincenty's Formulae
- GeographicLib
- Karney, Charles F. F. (January 2013). "Algorithms for geodesics". Journal of Geodesy. 87 (1): 43–55. arXiv:1109.4448. Bibcode:2013JGeod..87...43K. doi:10.1007/s00190-012-0578-z. Addenda.
geodist(coords1, coords2, metric='meter')
Return distances between two coordinates or two lists of coordinates.
Coordinates are assumed to be in Latitude, Longitude (WGS 84) format.
For distances between all pair combinations, see geo_pdist and geo_cdist.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords1
|
array - like
|
The first set of coordinates in the format (latitude, longitude) or an array with shape (n_points1, 2) for multiple points. |
required |
coords2
|
array - like
|
The second set of coordinates in the format (latitude, longitude) or an array with shape (n_points2, 2) for multiple points. The shape of coords1 should match the shape of coords2. |
required |
metric
|
str
|
The unit of measurement for the calculated distances. Possible values are 'meter', 'km', 'mile', or 'nmi'. Default is 'meter'. |
'meter'
|
Returns:
Type | Description |
---|---|
float or ndarray: The distance(s) between points, with a length of n_points. |
Raises:
Type | Description |
---|---|
ValueError
|
|
Examples:
>>> geodist((52.5200, 13.4050), (48.8566, 2.3522), metric='km')
878.389841013836
>>> coords1 = [(37.7749, -122.4194), (34.0522, -118.2437)]
>>> coords2 = [(40.7128, -74.0060), (41.8781, -87.6298)]
>>> geodist(coords1, coords2, metric='mile')
array([2449.92107243, 1745.82567572])
>>> geodist((37.7749, -122.4194), (37.7749, -122.4194))
0.0
Source code in geodistpy/distance.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
geodist_matrix(coords1, coords2=None, metric='meter')
Compute distance between each pair of possible combinations.
If coords2 is None, compute distance between all possible pair combinations in coords1. dist[i, j] = distance(XA[i], XB[j])
If coords2 is given, compute distance between each possible pair of the two collections of inputs: dist[i, j] = distance(X[i], X[j])
Coordinates are assumed to be in Latitude, Longitude (WGS 84) format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords1
|
list of tuples
|
List of coordinates in the format [(lat, long)] or an array with shape (n_points1, 2). |
required |
coords2
|
list of tuples
|
List of coordinates in the format [(lat, long)] or an array with shape (n_points2, 2). If coords2 is not None, coords1.shape must match coords2.shape. Default is None. |
None
|
metric
|
str
|
The unit of measurement for the calculated distances. Possible values are 'meter', 'km', 'mile', or 'nmi'. Default is 'meter'. |
'meter'
|
Returns:
Name | Type | Description |
---|---|---|
ndarray |
A distance matrix is returned. - If only coords1 is given, for each i and j, the metric dist(u=XA[i], v=XA[j]) is computed. - If coords2 is not None, for each i and j, the metric dist(u=XA[i], v=XB[j]) is computed and stored in the ij-th entry. |
Raises:
Type | Description |
---|---|
ValueError
|
|
Examples:
>>> coords1 = [(52.5200, 13.4050), (48.8566, 2.3522), (37.7749, -122.4194)]
>>> geodist_matrix(coords1, metric='km')
array([[ 0. , 878.38984101, 8786.58652276],
[ 878.38984101, 0. , 9525.03650888],
[8786.58652276, 9525.03650888, 0. ]])
>>> coords2 = [(40.7128, -74.0060), (41.8781, -87.6298)]
>>> geodist_matrix(coords1, coords2, metric='mile')
array([[ 3060.81391478, 2437.78157493],
[ 4290.62813902, 1745.82567572],
[ 2449.92107243, 1746.57308007]])
Source code in geodistpy/distance.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
greatcircle(coords1, coords2, metric='meter')
Calculate the distance between two sets of coordinates using the Great Circle approximation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords1
|
array - like
|
The first set of coordinates in the format (latitude, longitude) or an array with shape (n_points1, 2) for multiple points. |
required |
coords2
|
array - like
|
The second set of coordinates in the format (latitude, longitude) or an array with shape (n_points2, 2) for multiple points. The shape of coords1 should match the shape of coords2. |
required |
metric
|
str
|
The unit of measurement for the calculated distances. Possible values are 'meter', 'km', 'mile', or 'nmi'. Default is 'meter'. |
'meter'
|
Returns:
Type | Description |
---|---|
float or ndarray: The distance(s) between the points. If multiple points are provided, an ndarray is returned. |
Raises:
Type | Description |
---|---|
ValueError
|
|
Notes
The Great Circle formula assumes a spherical Earth and may not be completely accurate for very long distances or in regions with significant variation in the Earth's curvature.
Examples:
>>> greatcircle((52.5200, 13.4050), (48.8566, 2.3522), metric='km')
878.389841013836
>>> coords1 = [(37.7749, -122.4194), (34.0522, -118.2437)]
>>> coords2 = [(40.7128, -74.0060), (41.8781, -87.6298)]
>>> greatcircle(coords1, coords2, metric='mile')
array([2449.92107243, 1745.82567572])
>>> greatcircle((37.7749, -122.4194), (37.7749, -122.4194))
0.0
Source code in geodistpy/distance.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
greatcircle_matrix(coords1, coords2=None, metric='meter')
Compute distance between each pair of possible combinations using spherical asymmetry (Great Circle approximation).
If coords2 is None, compute distance between all possible pair combinations in coords1. dist[i, j] = distance(XA[i], XB[j])
If coords2 is given, compute distance between each possible pair of the two collections of inputs: dist[i, j] = distance(X[i], X[j])
Coordinates are assumed to be in Latitude, Longitude (WGS 84) format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords1
|
list of tuples
|
List of coordinates in the format [(lat, long)] or an array with shape (n_points1, 2). |
required |
coords2
|
list of tuples
|
List of coordinates in the format [(lat, long)] or an array with shape (n_points2, 2). If coords2 is not None, coords1.shape must match coords2.shape. Default is None. |
None
|
metric
|
str
|
The unit of measurement for the calculated distances. Possible values are 'meter', 'km', 'mile', or 'nmi'. Default is 'meter'. |
'meter'
|
Returns:
Name | Type | Description |
---|---|---|
ndarray |
A distance matrix is returned. - If only coords1 is given, for each i and j, the metric dist(u=XA[i], v=XA[j]) is computed. - If coords2 is not None, for each i and j, the metric dist(u=XA[i], v=XB[j]) is computed and stored in the ij-th entry. |
Raises:
Type | Description |
---|---|
ValueError
|
|
Examples:
>>> coords1 = [(52.5200, 13.4050), (48.8566, 2.3522), (37.7749, -122.4194)]
>>> greatcircle_matrix(coords1, metric='km')
array([[ 0. , 878.38984101, 8786.58652276],
[ 878.38984101, 0. , 9525.03650888],
[8786.58652276, 9525.03650888, 0. ]])
>>> coords2 = [(40.7128, -74.0060), (41.8781, -87.6298)]
>>> greatcircle_matrix(coords1, coords2, metric='mile')
array([[ 3060.81391478, 2437.78157493],
[ 4290.62813902, 1745.82567572],
[ 2449.92107243, 1746.57308007]])
Source code in geodistpy/distance.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|